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Abstract- The hydrostatic pressure derivatives of the single crystal elastic moduli of Ti have been 
measured to 5·5 Kbar. The pressure derivatives are dClI/dP = 5·0\, dC3aidP = 4·88, dC .. /dP = 0·52, 
dC66/dP = 0·45, dC'2 = 4·11, and dC'3/dP = 4·05. The positive value for dC ... /dP is in sharp contrast 
to dC •• /dP < 0 for Zr. This difference is assumed to arise from the difference between d(c/a)/dP in 
the two h.c.p. crystals and quantitative values of dC IJ/dV and dCu/d(c/a) are calculated. It is then 
shown that the large differences between the average Grtineisen mf>de 'YH calculated from dC IJ/dP 
and that obtained from thermal expansion data for both Ti and Zr can be explained by the differences 
between d(c/a)/dV under hydrostatic pressure and during thermal expansion, respectively . The 
relatively large negative value for dC ... /d(c/a) is quantitatively consistent with Cousins' calculations 
of the dependence of the electrostatic contribution to C .. on the cIa ratio in any h.c.p. metal lattice. 

1. INTRODUCTION 

IN A RECENT paper[l] we presented measure­
ments of the hydrostatic pressure coefficients 
of the single crystal elastic moduli of h.c.p. 
Zr. It was then shown that the shear modulus 
C44 decreases with increasing hydrostatic 
pressure and that this negative pressure 
coefficient causes a severe difference between 
the high temperature Griineisen 'Y, YH, cal­
culated from an averaging of the mode is, 
and the Grtineisen 'Y calculated from the 
measurements of volume thermal expansion, 
'YH(aV)' This wide difference was deemed 
significant in view of the fact that the same 
method of computing and averaging the mode 
is from the hydrostatic pressure derivatives 
of the elastic moduli of Mg, Cd, and Gd 
produced exceptionally good agreement with 
the volume thermal expansion data[2]. It was 

proposed that the failure to agree in the case 
of Zr is due to a significant dependence of the 
elastic moduli on the cIa ratio and the fact 
that d(cla)/dV derived from hydrostatic 
pressure at constant temperature differs in 
algebraic sign from d(c/a)/dV during thermal 
expansion at constant pressure: 

*Work pelformed under the auspices of the U.S. 
Atomic Energy Commission. 
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(
aln(cla») =I=(aln(cla») (1) 
a In V T . a In V p 

or 
~ =1= all-a.L 

(3 v av 
(2) 

where {3 and a are compressibility and thermal 
expansion coefficients, respectively, and the 
subscripts refer to the axial coefficients 
parallel ({311, all) and perpendicular ({3.L, (X.L) to 
the hexagonal axis and to the volume co­
efficients ({3v and av). The important con­
clusion from this work is that the transverse 
phonon frequencies and the elastic moduli 
are strongly dependent on the cIa ratio in 
h.c.p. Zr. 
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The most direct method of verifying the if 
proposed effect of the change in cIa ratio on (iJ In (c/a)/aVh = (a In (c/a)/aV)p. 
the elastic moduli would be via uniaxial 
pressure effects. In the case of Zr, however, 
there appeared to be a unique opportunity to 
check the cIa effect by measuring the pressure 
derivatives of the elastic moduli of h.c.p. Ti. 
Zr and Ti are remarkably similar in electronic 
and thermal properties. Both are Group IV 
transition metals with 2 electrons in an unfilled 
d electron shell. The thermally induced 
h.c.p. ~ b.c.c. structural transformations 
occur in both metals at nearly the same 
temperatures (i.e., 1135°K for Zr and 1 I 56°K 
for Ti). The second order elastic properties 
contain some very marked similarities [3]: 
(1) the value of the CGG shear moduli and the 
f311 values for Ti and Zr are the same to within 
5 per cent at any given temperature and (2) 
the temperature derivatives of the Cll , C33 , 

and C GG stiffness moduli and the bulk moduli, 
K, are very nearly the same for Ti and Zr at 
all temperatures. The two important differ­
ences between the elastic properties are as 
follows: (1) the anisotropy in linear compressi­
bilities as defined in equation (2) is negative 
for Zr, (f3J. > (311), but positive for Ti, and (2) 
the C44 shear modulus for Ti is about 40 per 
cent greater than in Zr, in contrast to almost 
identical CGG values mentioned above and the 
-10 per cent and -15 per cent differences in 
C33 and Cll , respectively. If we ascribe the 
negative dC44/dP in Zr to the increase in cIa 
ratio with increasing hydrostatic pressure, 
because of f3J. > f311, then, on the basis of the 
otherwise strong similarities between the 
metals, we should find that dC44/dP for Ti is 
positive. The measurement of dC44/dP for 
Ti is then a qualitative test of the conclusions 
reached in the Zr work. By making certain 
reasonable assumptions regarding other 
similarities in the two metals we can arrive 
at a quantitative test of the conclusion that 
the average mode 'Y, "iH, computed from the 
pressure dependence of the elastic moduli 
in an anisotropic crystal will agree with the 
Griineisen 'Y deduced from thermal expansion 

2. EXPE~NTALPROCEDURES 
The Ti single crystals were obtained by 

zone melting a rod of crystal bar iodide Ti. 
The experimental procedure for measuring 
the changes in ultrasonic' wave velocities in 
Ti as a function of pressure was the same as 
that for Zr[l]. Nitrogen gas was the pressure 
medium. The changes in the compressional 
moduli C u and C33 with pressure at 25° ± 0·1 °C 
were determined from the changes in critical 
pulse repetition rate frequency [4], fro for 
longitudinal waves propagated perpendicular 
and parallel, respectively, to the c axis of a Ti 
single crystal. The change in the shear modulus 
CGG = t( Cn - C12 ) was determined from the 
change in fr of a transverse wave propagated 
and polarized perpendicUlar to c axis, whereas 
the change in the C44 shear modulus was 
determined from the transverse wave mode 
propagated par<l;llel to the c axis. The change 
in C13 with pressure was derived from the 
change in fr for the longitudinal wave propa­
gated 45°±to to the c axis. The basic data, 
fr/fro' where fro corresponds to fr at 1 bar, are 
plotted in Fig. 1. Mode numbers 1 through 5 
correspond respectively to the Cn, C 33, C 44 , 

CGG and the 45° quasi-longitudinal modes. 
Except for mode # 3, C44 , thefr/fro vs. pressure 
lines are straight, within experimental error, 
to 5·516 Kb. For the C44 mode the data suggests 
that a relatively abrupt change in slope occurs 
at approximately 2·5 Kb. 

The changes with pressure of the thickness 
of the crystal parallel to the ultrasonic wave 
path and the volume change, that are necessary 
for computing the modulus change, were 
computed from the isothermal jinear com­
pressibilities calculated at 1 bar and at intervals 
of 0·0276 Kb from the stiffness moduli [1]. For 
the adiabatic to isothermal compressibility 
calculation the following volume thermal ex­
pansion coefficient, CX v, and the Griineisen con­
stant, 'YH(CXV) , were used: CXv = 2·4 x lO-StK 
and 'YH(CXV) = 1·10 (Ref. [5]). 
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Fig. I. Frequency ratio vs. pressure for the following 5 modes 
of wave propagation in Ti crystals: ( I) and (2) are longitudinal 
modes perpendicular and parallel, respectively , to c axis , (3) 
shear mode propagated parallel to c axis, (4) shear mode with 
propagation and polarization rectors in basal plane and (5) 

longitudinal mode propagated 45° to c axis. 

3. RESULTS 

(a) Single crystal data 
The values of the stiffness moduli as 

evaluated at intervals of 0·276 Kb (4,000 psi) 
are plotted against pressure in Fig. 2. The 
values of the pressure derivatives as derived 
from the best straight line through the plotted 
points are shown in parentheses. It should be 
noted that the small change in slope indicated 
in the fr/fro data for C44 (Fig. 1) is not dis­
tinguishable in Fig. 2 because of the difference 
in scales along the ordinates. It is clear, 
however, that dC44/dP > 0 at any given 
pressure up to 5·516 Kbar, whereas for 
Zr, dC44/dP is constant and less than zero 
between 1 bar and 4·7 Kb pressures [1]. 

The variations with pressure of the adiabatic 
and isothermal compressibilities are shown 
in Fig. 3. Within the error of the calculations, 
d{3,,/dP = d{3l. /dP and the isothermal values 
give d{3,,/dP = -1·3 (mb)-2 and d{3 v/dP = 

-3·8 (mb)-2. Since the pressure derivatives for 
{3" and (3 1. are constant over the 5·5 Kb 

pressure range, the variation of the cIa ratio 
with pressure, 

d(c/a) =f(Q _Q) 
dP a I-'J. 1-'11 (3) 

is negative for Ti and decreases in magnitude 
with increasing pressure. 

(b) Pressure dependence of isotropic elastic 
parameters 

The variations with pressure of several 
bulk properties, as calculated from the present 
data through the Voigt-Reuss-Hill approxi­
mation[6], are plotted in Fig. 4. The pressure 
derivatives for several parameters are given 
in Table 1. In contrast to Zr, the isotropic 
Poisson's ratio of Ti has a very small pressure 
derivative. The isotropic shear modulus varies 
linearly with pressure. 

The variation of density with pressure, 

dp/dP = p{3v, (4) 
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TabLe 1. Isotropic eLastic parameters of titanium and their 
pressure derivatives 

Elastic parameter, X 

Adiabatic bulk modulus, K, 
Isothermal bulk modulus, K t 
Shear modulus, /LH 
Compressional-wave velocity, Vp 

Shear-wave velocity, V, 
Poisson's ratio, u , 
Density, p 

(0.52) 

Value at 
I Bar, 25°C (dX/dP) 

1072-7 Kb 
1063·4 Kb 
433 ·6 Kb 

4·31 
4·35 
0·47 

j 

6·05 km/sec 
3' IOkm/sec 
0·322 
4·5063 grn/cm3 

6·1 x 10-3 km/sec/kb 
2·6 x 10-3 km/sec/kb 
2·5 X 10-3 kb- 1 

4·1 X 10-3 gm/cm3/kb 

0.945.----,---,.---,--,---.,----, 

0.9 25 

1: 
5°·91 5 
,. ... 
:::; 
iii 
u; .. 
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0: .. ,. 
8 0 325 

TITANIUM 

• Isothermal 
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0'29~k--~---*--~~~-~~--b--~6 
PRESSURE 0<1» 

Fig. 3. Linear and volume compressibilities vs. pressure 
forTi. 

360E=:::::::ic.~.::::=!::::(=0.::',5=)!=::::=l;::==!:=:.. _l..:J 350f i 1 ~ ~ ~ 6 

over the initialS ' 5 Kb applied pressure is 
considerably smaller for Ti as compared to 
the value for Zr. The value of dK-s/dP, where 
Ks is the adiabatic bulk modulus, is about 
8 per cent higher for Ti than for Zr, i.e., 
4·39vs.4·08. 

PRESSURE (kb) 

Fig. 2. Elastic stiffness moduli vs. pressure for Ti. 
Numbers indicate values of pressure derivatives assuming 

linear relation. 
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Fig. 4. Shear modulus, Poisson's ratio and bulk modulus 
vs. pressure as computed from Voigt-Ruess-Hill ap­
proximation for polycrystalline Ti with random grain 
orientation. The density vs. pressure data are obtained 
from the isothermal volume compressibility data given 

in F ig. 3. 

Anderson [7] has successfully extrapolated 
the low pressure ultrasonic data to estimate 
compression of various solids to high pressure. 
The basic assumptions, given by Murnaghan 
[8], are that the (aKTlap)p-+o, where KT is the 
isothermal bulk modulus, is a constant quantity 
in this range of extrapolation. The Murnaghan 
equation of state can be written [4] as 

= [ (aKT) (L)] -I!(aKrlaPh 
VIVo I + ap T KT (5) 

where V and Vo are volumes at pressure P 
and at zero pressure, respectively. The value 
of (aKTlap) , obtained by using Overton's 
relationships [9], is calculated to be 4·35. 
Thus the compression equation becomes 

VIVo = [1 + O·0040923P]-O'22978. (6) 

In Fig. 5, a comparison between the experi­
mentally determined VIVo values and the 
ultrasonic equation of state is shown. There 
is a fairly good agreement between the iso­
thermal compressibility data of Bridgman [10] 
and the ultrasonic equation. There is a poor 
agreement between the latter and the shock­
wave data [11] , probably because of the phase 
change that has been reported for Ti near 
90 Kbar [ 1 2]. 

1600..---...--,---,----,----,,--...--,---, 

1200 

w 
g; soo 
VI 

'" w 
a: 
Q. 

400 

0.7 

--Ullrasanic equation 
of stat. 

1.0 
VIVo 

Fig. 5. Comparison of compression data for Ti as ob­
tained from isothermal compressibility measurements of 
Bridgman[lO], from ultrasonic equation of state derived 
from isothermal dK/dP, where K is the bulk modulus, 

and from shock wave data given in Ref. [II]. 

4. DISCUSSION OF RESULTS 

In Table 2 the pressure derivatives of the 
stiffness moduli for Ti are compared with 
those of other h.c.p. metals [13- 15]. The 
purpose of this comparison is to show that 
there is a general decrease with the cia ratio 
of the pressure derivatives of the ~ij, where 
i = j, and that the pressure derivatives of the 
C44 and C66 shear moduli are very significantly 
reduced at cia < 1·62. The following dis­
cussion is based on the presumption that the 



662 E. S. FISHER and M. H. MANGHNANI 

Table 2. Pressure derivatives at 25°C of the 
adiabatic stiffness moduli for Ti compared to 

those for Zr, Gd, Mg, and Cd 

Ti Zr* Gdt Mg:j: Cd§ 

cIa ratio 1·587 1·593 1·590 1·62 1·88 

dCll/dP 5·01 3·93 3·12 6·11 9·29 
dC3;l/dP 4·88 5·49 6·02 7·22 7·26 
dC •• /dP 0·52 -0·22 0·07 1·58 2·38 
dC66/dP 0·45 0·26 0·36 1·36 2·59 
dC'2/dP 4·11 3·42 2·39 3·39 4·10 
dC13/dP 4·05 4·25 3·55 2·55 5·66 
dK./dP 4·31 4·08 3·22 4·05 7·02 

*Ref. [1] 
t Ref. [13] 
:j:Ref. [14] 
§Ref. [15]. 

effect of changing the cIa ratio during appli­
cation of. hydrostatic pressure assumes a 
more significant role in changing the Cli and 
the phonon frequencies when the initial 
cIa < 1·62. We first present a simple formal 
approach to show that the wide difference in 
dC44/dP between Ti and Zr, and other 
differences between the elastic properties 
of the two metals, can be explained by the 
difference between the respective f3J. values. 
We then show that the differences between 
the average mode Griineisen yP (q), "PH, as 
calculated from the dCij/dP (i = or "" J) for 
Ti and Zr and as calculated from the volume 
thermal expansion can probably be explained 
by the differences in d(c/a)dV between the 
two experimental conditions. 

(a) Separation of av and a(c/a) effects on 
the CiJ 

The following equations are developed to 
show the parameters that relate the volume 
change and the cIa change, separately, to 
the total measured dCij/dP: 

dCij/dP = (aCij/ap)cla 

d(c/a) + (aCij/a(c/a»)v dP (7) 

_ (a(c/a») dV (aCij/a(c/a»v av TdP (8) 

= - f3 vCil(a In Cil/a In V)cla 

+ (c/a)(f3J. -f3I1)(aCij/a(c/a) )v. (9) 

For cubic metal crystals [16] the measured 
dC;j/dV values in all cases are negative 
(dCiidP > 0), as expected for normal solids 
with positive values of the Griineisen y , so 
we can reasonably expect (aCij/aV)cla to be 
negative. Thus the occurrence of a negative 
value for dCij/dP will depend on the difference 
({3J. - f311) and the value of (aCij/a (c/a» v. Since 
({3J. - f3IJ is positive for Zr and negative for Ti, 
the wide difference in dC44/dP for the two 
metals can be simply related to a relatively 
large and negative value for (aC44/a(c/a» v. 
If we go further and assume that the values 
for the two partial derivatives for each Cij 

are the same for Ti as in Zr, an assumption 
which is perhaps reasonable in view of the 
many other similar properties, we arrive at 
the quantitative values given in Table 3. The 
first two columns list the values for the two 
unknowns that are obtained by simultaneously 
solving equation (9) with the known co­
efficients and measured dCiidP for Ti and Zr. 
The components of dCij/dP due to a v and to 
a(c/a) for each metal are listed in columns 3 
and 4, respectively. For Ti the change in 
modulus due to the cIa change is less than 
4 per cent of the total pressure derivative for 
Cu , C33' C 12' and C 13' whereas, the contri­
butions to ·dC44/dP and dC66/dP are about 
24 and 11 per cent, respectively. For Zr the 
a(c/a) contributions are considerably larger, 
because of the relatively large anisotropy in 
f3J. and f311' and the negative contribution to 
dC44/dP overwhelms the positive effect of the 
volume decrease. 

(b) av and Mc/a) effects on the normal mode 
frequencies of lattice vibrations 

In the quasi-harmonic approximation the 
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Table 3. Evaluation of the ~V and ~(c/a) contributions to the 
dCuidP ,from simultaneous solutions of equation (9) 

(ac /j/ac/alv 
- (a In c u/a In V)cla 1012 dynes/em' 

3·18 
2-81 
0·912 
1·233 
4·741 
6·284 

- 10·59 
5·034 

- 6·506 
- 2·432 
-2-486 
- 0,753 

frequencies of the normal modes of crystal 
lattice vibrations are assumed to be dependent 
only on the volume of the crystal via the mode 
Grtineisen gamma, 

y 1' (q) = 
dlnwp(q) 

din V 
(10) 

where q is the direction in which the wave 
mode propagates in the crystal , p is the polari­
zation direction and wp(q) is the wave mode 
frequency . Since the yP(q) vary for different 
modes , the Grtineisen y that is derived from 
the thermal expansion coefficient at a given 
temperature, 

(I 1) 

(where C v is the specific heat at constant 
volume) is an average of the individual mode 
yP(q) weighted according to its degree of 
excitation at the particular temperature. It 
has been shown [17, 2] that reasonably good 
agreement with equation (11) can be obtained 
by calculating yP(q) from the hydrostatic 
pressure derivatives of the stiffness moduli, 
which we shall denote in this discussion as 
Cp(q). For hexagonal symmetry this approach 
gives [2] 

{3J.. (311 1 yP(q) = - (1- n2 ) + - n2 --

{3 v {3 v 2 

x (l_~(a In Cp(q»)) (12) 
{3 v ap T 

(aCjjlap) cla (ac/jlaPlv 
Ti Zr Ti Zr 

4·81 4·79 0·201 -0·86 
4·98 5·08 - 0·096 0·409 
0·397 0·306 0· 124 - 0 '528 
0·404 0·457 0·046 - 0,197 
4·07 3·60 0·047 -0'202 
4·04 4·31 0·014 - 0'061 

where n is the cosine of the angle between the 
q direction and the c axis. Through the use of 
Gerlich's computer program [2] we have 
evaluated the yP(q) in Ti and Zr for each of the 
three normal modes at 300 different directions 
in the crystal and obtained weighted average 
;:;it from the 4°K Cp(q) and 298°K values of 
dCp(q)/dP and 'YH from the simple average of 
the yP(q) over the 300 directions. Gerlich [2] 
has shown that for Mg and Cd the 'YL and 'YH 
values are in good agreement with the thermal 
expansion [18] YL(CXv) and YH(CXV), as shown in 
Table 4. We have previously reported that 
this is not the case for Zr[l] , where YH is 
about i of YH(CX V) (Table 4)[19,20]. For Ti 
this deviation is not as severe as for Zr but 
it is still quite large, as shown in Table 4 where 
YH is about 70 per cent of YH(CX V) when the 
measured dCiq)/dP are used to evaluate 
the yP(q). It should be noted here that the 
measured, adiabatic, stiffness moduli and 
pressure derivatives are converted to iso­
thermal values before calculating y P(q) . At 
the present time the YL(CX V) for Ti and Zr are 

Table 4. Comparison of 'Y calculated from 
measured dC1J/dP with y(cxv) obtained from 

thermal expansion data 

Refs. to 
1L I'L(a V) 1H I'H(a V) I'(a v) 

Mg 1·45 1·40 1·52 1·50 18 
Cd 2·16 2·3 2·06 2·3 18 
Zr 0·018 0'2±0'4 0·37 1·01 19 , 20 
Ti 0·50 1·0±0·5 0·77 1·10 19, 5 
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are each known only from measurements [19] 
on two polycrystalline samples where the 
values differ considerably, as noted in the 
uncertainty given in Table 4. We are therefore 
in no position to even estimate the validity of 
the calculated "iL for these two metals. 

To explain the large difference between 
YH and 'Y~av) for Zr it was proposed that the 
dependence of the frequencies, wp(q), on the 
change in cia ratio must be separated from 
the effect of volume change so as to consider 
the differences in d(cla)/dV under hydrostatic 
pressure and thermal expansion: 

p _ (a In wp(q») d In (cia) 
'Y (q) - (yP(q»cla- 0 In (cia) v d In V ' 

(13) 
for thermal expansion 

d In (cia) = (a In (Cia») = all- al. (14a) 
d In V 0 In V p a v 

whereas for hydrostatic pressure 

din (cia) =(aln(cla») =f3I1- f3l. (14b) 
d In Vain V T f3 v · 

The measured values for equations (l4a and 
14b) for Mg, Cd, Zr, and Ti are listed in 
Table 5. The anisotropy in compressibility can 
be evaluated from the elastic moduli [21, 22, 
3] within 2 or 3 per cent and are therefore 
quite reproducible. The a ll and al. values are 
however very sensitive to small errors in the 

Table 5. Differences between axial 
linear compressibilities and thermal 
expansion coefficients for Mg, Cd, Zr 

andTi 

1 1 
Refs. /3v (/311- i3l. ) -(all-a) 

a v l. 

Mg 0·013 0·019 [21 , 18] 
Cd 0·660 0·361 [22, 18] 
Zr -0·049 0·136 [3,20) 

0·045 [23] 
Ti 0·013 -0-144 [3 ,5] 

0·059 [24] 

temperature dependence of expansivity data 
and can therefore vary considerably with the 
methods of measurement and data treatment. 
Table 5 lists two different values for (all- a.t> 
in Zr and in Ti. The a values taken from 
Refs. [20] and [5] are instantaneous tempera­
ture derivatives of the lattice constants at 
300oK, whereas the other values [23 , 24] 
correspond to the mean slope over wider 
ranges of temperature. For Mg we assume 
that the excellent agreement between 1H and 
'YH(aV) can be ascribed to the very small 
difference between equations (14a and 14b) 
whereas for Cd we surmise that the (0 Inwp(q)1 
a In (cla»v terms are very small. 

To estimate the relative contributions ofthe 
volume and cia changes to the wp(q) ofTi and 
Zr we use the data of Table 3, obtained from 
simultaneous solutions of equation (9). The 
first term on the right of equation (13), 
(yP(q) )cla, is related to (a In cula In V)cla as 
follows: 

1 (0 In Cu) 
2 a In V Cia 

(15) 

where f3q is the linear compressibility in the 
q direction. The second term of equation (13) 
is derived from, 

(a In wp(q») _ cia ( oCjj ) 

o In (cIa) v - 2Cjj o(Cla) v· (16) 

The calculated values for equation (13) 
are given in Table 6. For Ti the tl(c/a) contri­
bution has a major effect only for the C44 

mode, whereas for Zr the tl(c/a) effect is very 
large for the C44 mode and has a major role 
in reducing the yP(q) for the Cll and C66 

modes. 
Having arrived at a plausible explanation 

for the difference between 1H for Ti and Zr 
we can now test the proposal that the differ­
ences between 1H and 'Y~av) are caused by the 



PRESSURE DERIVATIVES OF THE ELASTIC MODULI 665 

Table 6. Values of the LiV and Me/a) contributions to 
the yP(q) for the principal normal acoustic modes in 

Ti andZr 

f3i1-{3.L 
(y"(q» eICl - (iJ In w,,(q)/iJ In (e/al) v -----;s;- Total 'YP(q) 

Cp(q) Ti Zr Ti 

CII 1·42 \·43 0·067 
C33 \ ·23 1·20 -0·029 

C'4 0·29 0·26 +0·14 
CM 0·45 0·44 +0·07 

(a(c/a)/iWh and (a(c/a)/aV)p terms of equa­
tions (14a and 14b). This can be done by 
replacing the second term on the right of 
equation (8) with the (a(c/a)/aV)p term, 

( 
aCij ) (a(c/a») dV _ (~) 

a (c / a) v a v p dP a (c / a) v 

(3v c ) X-·-(all-a.L 
av a 

(17) 

This leads to the following version of equation 
(9): 

dCp(q) /dP = - (3vC p(q) (alnCp(q») 
alnV cia 

- *~ (a - a .L ) (3v (aCp(q») 
a II av a(c/a) v·(I8) 

The pressure derivatives calculated from 
equation (18) using two different values of 
(all - a ) for each metal are listed in Table 7. 
For Ti, a .L > all according to the data given 
in Ref. [5], hence, the calculated pressure 
derivatives for Cll , C44 ' and C66 are consider­
ably smaller than the measured values. The 
"h and VH values computed from incorporating 
these dC(q)/dP in equation (10) would ob­
viously be smaller values than given by the 
measured values of Table 2. The (all -a.L ) 
obtained from the 3000 to 7000 K slope of the 
linear lattice constant vs. temperature plots 
[24] of Ti is, however, positive in sign and 
the calculated dCp(q)/dP incorporated into 
equation (12) gives a YH(b) value of 1·06, 
which is in excellent agreement with the 

Zr Ti Zr 

-0·288 \ ·49 1·14 
0·120 \ ·20 \·32 

-0·79 0·43 -0·53 
-0·27 0·52 O· I7 

Table 7. Pressure derivatives of 
elastic moduli of Zr and Ti calculated 
from equation (18), assuming 
Li( c/ a) dictated by thermal expansion 

datafrom Table 5 

Ti Zr 
(a) (b) (a) (b) 

(Cl'JI-U )/uv -0·144 0·059 0·136 0·045 

dClI/dP 
dC33/dP 
dC .. /dP 
dC66/dP 
dCl2/dP 
dC13/dP 

2·552 5·729 7·193 5·590 
6·047 4·537 3·937 4·699 

-0·989 0·963 1·783 0·798 
-0·1\4 0·616 1·009 0·641 

3·540 4·285 4·160 3·784 
3·880 4·102 4·482 4·368 

YH(aV) obtained from equation (11) (see 
Table 8). 

For Zr the instantaneous (all-a.L ) value 
from dilatation measurements [20] produces 
relatively large calculated dCp(q)/dP and YH(a) 

is about 80 per cent greater than YH(aV) (see 
Table 8). The smaller value of (all- a.L ), again 
obtained from nearly linear lattice constant 
vs. temperature curves[23], give dCp(q)/dP 

Table 8. Comparison of y computed 
from the values of dCp(q)/dP (or 
dCu/dP) obtainedfrom equation (18) 

"h 'Yt.(uv) YH YI/(uv) 

Zr 1·82<a) 0·2 ±0·4 \·83(8) 1·01 
0·9()lb) I·O<)<b) 

Ti 0·5()lb) 1·0±0·5 1·06(b) 1·10 

(a) and (b) refer to subheadings of Table 7. 
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values that result in 'YH(bl for Zr within 
10 per cent of 'YH(aV) (Table 8). There is, then, 
reasonably valid quantitative evidence that 
the measured values of dCu/dP, dC«ldP, 
and dC66/dp in Ti and Zr contain an appreci­
able negative contribution from the change 
in cIa with hydrostatic volume change and 
that the disagreement between 'YH and 'YH(aV) 
arises from the difference between d(cla)/dV 
under thermal expansion and hydrostatic 
pressure conditions. 

(c) Relation of 6.( cIa) effect to specific 
contributions to the shear moduli 

For a polyvalent metal it is assumed that 
there are three important contributions to the 
elastic shear strain energy of the crystal, 
WE, WR , and WF [25]. WE is the electrostatic 
or Coulomb term derived from the shear 
displacement of the positively charged ion­
core in an electron sea. WR is derived from 
the ion-ion repulsion energy and WF , the 
Fermi energy term, consists of two parts; 
the full zone term, where the energy change 
arises from the movement of planes of the 
Brillouin zone, and the overlap-hole ter!1l, 
where the Fermi surface is displaced and a 
transfer of electrons occurs between zone 
overlap or hole states. The problem of prime 
interest here is to arrive at some conclusions 
as to which of the contributions to C44 of Ti 
and Zr create the relatively large value for 
(dC44/d(c/a»v, given in Table 3. The theoreti­
cal calculations [26, 27] that have been 
carried out for C« in h.c.p. metals (Mg, Cd, 
and Zr) have not treated the W F term because 
of the difficulty caused by the change in 
crystal symmetry that accompanies the C« 
shear. Nevertheless, these calculations do 
indicate that the WE term is relatively impor­
tant to C« and that it is reasonable to assume 
that the variation of this term with cIa could 
account for our results . 

Cousins [29] has carried out calculations of 
the effect of changing .cla at constant volume 
on the WE and W R contributions to the 
three second order shear moduli for h.c.p. 

structures. From Cousin's calculations of 
WE, assuming a uniform electron density 
distribution, it is clear that C44 is the volume 
conserving shear that is most affected by 
6.(cla). If we neglect the change in the first 
order term that enters into the calculations, 
it is found that (C44 )E decreases at a constant 
rate while cIa increases from 1·56 to 1·633 
with slope 

where Z is the effective valence and ao is the 
interatomic distance in the basal plane as 
given in A. Assuming Z = 4 for Ti or Zr we 
obtain 

which is surprisingly near the value of 
-6·506 x 1012 dynes/cm2 that is derived for 
(aC44Ia(cla»v from equation (9). 

For (a(C66)Ela(cla»v, Cousin's calculations, 
again neglecting the first order term and using 
Z = 4, predict a value of -0·6, or about t of 
that obtained from equation (9). This suggests 
that the Fermi energy contribution to Css, 
(CSS)F, is the important factor in (aCssI 
a (cIa) )v. This conclusion is consistent with 
the observations in Ref. [30] that dCss/dT 
in h.c.p. transition metals is closely related 
to dX/dT , where X is the magnetic suscepti­
bility. The relation of Css to X of Ti and Zr 
is presumed to arise from the mechanism of 
electron transfer between zone overlaps 
during distortion of the Fermi surface, 
whereas this mechanism is less important or 
absent during C« shear. 

5. CONCLUSIONS 

(1) In crystals with lower than cubic 
symmetry the changes in axial ratios with 
hydrostatic pressure can produce important 
contributions to the pressure derivatives of 
the elastic moduli. For h.c.p. Ti and Zr, with 
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cIa ratio < 1·60, the changes in the shear 
moduli, C44 and C66 , with pressure are strongly 
influenced by the change in cIa ratio. 

(2) The Griineisen y computed from an 
averaging of the mode y's , as derived from the 
hydrostatic pressure derivatives of the elastic 
moduli , can be widely different than the y 
computed from thermal expansion data when 
the dCij/dP contain significant contributions 
from the changes in axial ratio and when the 
volume dependence of the axial ratio, or 
ratios , during hydrostatic compression differs 
from that during thermal expansion. This 
indicates that the high frequency thermal 
vibrations are also sensitive to changes in 
axial ratio with thermal expansion. 

(3) A correlation of the quantitative effect 
of (cIa) on C44 and C66 for Ti and Zr with 
theoretical calculations for the strain energy 
contributions to h.c.p. crystals [28] indicates 
that dC44 /d(cla) is derived primarily from 
electrostatic forces whereas dC66/d(cla) 
probably arises for electron transfer during 
Fermi surface distortion. 

(4) The equations of state at very high 
pressures, predicted from the pressure 
derivatives of the bulk moduli of Ti and Zr 
at lower pressure, do not agree with the 
equations of state derived from shock-wave 
experiments for these two metals. 
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